CrossFire Advanced Structural Fire Engineering at Intersections Among Disciplines Como, May 26-30, 2025

Structural Fire Design Methods of Steel-plate Composite Walls (SC Wall)

Myeong Hoo Jeong – Pukyong National University

1. Introduction

- Steel-plate composite walls (SC walls), consisting of steel tubes filled with concrete, have been increasingly adopted in international design practices due to their superior structural performance.
- Design provisions and guidelines for SC walls have not yet been established in South Korea, so international standards such as AISC must be referenced.
- Especially, fire resistance design is essential, but international standards have many parameters and result in conservative design.
- To support efficient design in practice, this study proposes a practical structural fire design method based on temperature-dependent strength evaluation.

2. Research Overview

Figure 4. Finite element method using ABAQUS Figure 5. Steady-state thermal resistance model

3. FE Model and Validation

Figure 6. FE modeling of SC Wall

- . The thermal properties of the materials were applied with reference to the Eurocode.
- The analysis was conducted using the ISO 834 standard fire curve .

VOLTA

a = Heat generation per unit volume of concrete. W/m³ R_c = Concrete thermal resistance for conduction, W/m²°C $R_{\circ} =$ Steel thermal resistance for conduction. W/m²°C

 $P_{no}(T) = A_s F_v(T) +$

= Convection coefficient at the heated surface. W/m²°C

= Thermal resistance at steel-concrete interface. W/m²

Figure 9. Equation in AISC

Equation-3 hours

Equation-2 hours

125

Concrete depth (mm)

Figure 11. Comparison between the profile and equation

 $0.85A_cf_{ck}(T_i)$

Analysis-2 hour

175

 $\Delta T_a = \dot{q}(0.2x - 0.5x^2)$

Determination of Section size Determination of fire exposure time Securing of temperature by layer (temperature profile or equation)

Strength calculation for each layer using equation in AISC $P_{no}(T) \ge P_u$ ок End

Figure 10. Design process

5. Design Example

Table 1. Information of SC wall									
Steel-plate thickness	e Concrete Yield stress s thickness (steel-plate)		Compressive strength (Concrete)	Fire exposure time					
12 mm	300 mm	355 MPa	30 MPa	2-hour					

1000 (°C) 800

600

400

200

emperature

Table 2. Example of strength calculation using AISC equation (Figure. 9)

5		5
(2)	Temperature	nrofile

Lint	Layers of material									
LIST	Steel		Concrete							
Depth(mm)	-		0~25	25~50	50~75	75~100	100~125	Over 125		
Temperature (°C)	1000	100	900	600	400	300	200	100		
P _{no} per layer (N/mm)	170.4	4,260	60	112.5	562.5	637.5	712.5	5250		
P _{no} (N/mm)	10856.4									

	(b) Temperature prediction equation										
	1:-4	Layers of material									
	List	St	Steel Concrete								
				0.05	05 50	50 75	75~	100~	125~	150~	Over
	Depth (mm)	- 0~25 25~50 50~75	100	125	150	175	175				
	Temperature (°C)	1000	100	900	800	700	600	500	400	200	100
	P _{no} per layer (N/mm)	170.4	4,260	60	112.5	225	337.5	450	562.5	712.5	3,750
	P (N/mm)					9	708 9				

6. Conclusion

This study proposes a temperature-based structural fire design method for efficient design of SC walls by domestic structural engineers.

Heat transfer analysis was conducted to obtain the temperature profile of SC wall, and a steady-state thermal resistance model was applied to derive a simplified internal temperature prediction equation.

Using both two method, strength of fire-exposed SC walls was evaluated and compared, verifying the practical applicability.

ArcelorMittal

ADVANCED STUDIES